Ju n 20 08 Conditioning SLEs and loop erased random walks

نویسندگان

  • Michel Bauer
  • Denis Bernard
  • Tom Kennedy
چکیده

We discuss properties of dipolar SLEκ under conditioning. We show that κ = 2, which describes continuum limits of loop erased random walks, is characterized as being the only value of κ such that dipolar SLE conditioned to stop on an interval coincides with dipolar SLE on that interval. We illustrate this property by computing a new bulk passage probability for SLE2. 1 Institut de Physique Théorique de Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France and Laboratoire de Physique Théorique, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France. Member of the CNRS; Laboratoire de Physique Théorique, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France. Department of Mathematics, University of Arizona, Tucson, AZ 85721.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loop-erased Random Walks, Spanning Trees and Hamiltonian Cycles

We establish a formula for the distribution of loop-erased random walks at certain random times. Several classical results on spanning trees, including Wilson’s algorithm, follow easily, as well as a method to construct random Hamiltonian cycles.

متن کامل

The growth exponent for planar loop-erased random walk

We give a new proof of a result of Kenyon that the growth exponent for loop-erased random walks in two dimensions is 5/4. The proof uses the convergence of LERW to Schramm-Loewner evolution with parameter 2, and is valid for irreducible bounded symmetric random walks on any discrete lattice of R2.

متن کامل

Loop-erased Walks Intersect Infinitely Often in Four Dimensions

In this short note we show that the paths two independent loop-erased random walks in four dimensions intersect infinitely often. We actually prove the stronger result that the cut-points of the two walks intersect infinitely often. Let S(t) be a transient Markov chain with integer time t on a countable state space. Associated to S, is the loop-erased process Ŝ obtained by erasing loops in chro...

متن کامل

Determinantal correlations of Brownian paths in the plane with nonintersection condition on their loop-erased parts.

As an image of the many-to-one map of loop-erasing operation L of random walks, a self-avoiding walk (SAW) is obtained. The loop-erased random walk (LERW) model is the statistical ensemble of SAWs such that the weight of each SAW ζ is given by the total weight of all random walks π that are inverse images of ζ, {π:L(π)=ζ}. We regard the Brownian paths as the continuum limits of random walks and...

متن کامل

The loop - erased random walk and the uniform spanning tree on the four - dimensional discrete torus

Let x and y be points chosen uniformly at random from Z4n, the four-dimensional discrete torus with side length n. We show that the length of the loop-erased random walk from x to y is of order n(logn), resolving a conjecture of Benjamini and Kozma. We also show that the scaling limit of the uniform spanning tree on Z4n is the Brownian continuum random tree of Aldous. Our proofs use the techniq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008